Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

The required number of digits is 29 because, as we shall show, 10%® < 29 < 10%°. More

exactly, we shall prove that 1 < 10 < 10. Since

4
296 ro2\%  ((212)? 40962\*  /1,6777216-107\" .
0% \107) 107 ) 107 )] 107 — (1,6777216)7,
we obtain that

96 96 96

2 2 2
11 < 0% < 1,68)%, that is 1 < o5 < (2.8224)? and, hence, 1 < 0% < 32 < 10.

Note: another way to show that 10?® < 2% is, for example:

55 < 212

52 < 25 52 < 925
52 < 25

5 5 k3 12
5 93 53<29}:>5 <2.5 <2 =

} =5 <25.5%° <217
=27.5" <2 =
= (107 < (229" =

= 10%® < 2%,

Solution 4 by Toshihiro Shimizu, Kawasaki, Japan

Since 103 < 210 = 1024 < 1.03 x 10% and 2% = (219)” x 26 = (219)° x 10 x 6.4 we have
6.4 x 10 x 1039 <29 < 6.4 x 10 x 103 x (1.03)".

We evaluate 1.03%. We have 1.03 x 1.03 x 1.03 = 1.0609 x 1.03 = 1.092727 < 1.1 and
1.1 x 1.1 x 1.1 =1.331 < 1.4 (I never use calculator.) Therefore, we have

1028 < 6.4 x 102 < 2% < 6.4 x 1.4 x 10%® =8.96 x 10%® < 10%°.

Therefore, the number of digits in 2% is 29.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Hatef I.
Arshagi, Guilford Technical Community College, Jamestown, NC; Kee-Wai
Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; David
Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and
the proposers.

5435: Proposed by Valcho Milchev, Petko Rachov Slaveikov Seconday School, Bulgaria

a*+3a2+1

Find all positive integers a and b for which -
a —

is a positive integer.

Solution 1 by Moti Levy, Rehovot, Israel

This solution is based on similar problem and solution which appeared in [1].



a*+3a2+1
ab—1
the numerator.

may be replaced by equivalent expression with symmetric polynomial in

Indeed,
a*+3a>+1  a®(a®>+0*+3)—(ab—1)(ab+1)
ab—1 ab—1 '
Now, a and ab — 1 satisfy the equation b* a4 (—1) * (ab— 1) = 1, which implies that a
and ab — 1 are relatively prime and clearly a? and ab — 1 are also relatively prime.

1 +3d%+1 2402 +3
Thus, atoat is a positive integer if and only if arrs is a positive integer.
ab—1 ab—1
We call the ordered pair (a,b) a solution if
@’ +b°+3 )
ab—1
where m is a positive integer. The set of solutions is not empty since (1,2) is a solution.
2a% + 3 5

We exclude (a, a) from the set of solutions since aaz + T = 2+ 21 ¢ N for all a > 0.
Equation (1) is re-written as follows

a? —mab+b* = — (m +3). (2)

It is easily verified (see (3)) that if (a,b) is a solution then (ma — b, a) is a solution as

well.

2

(ma — b)* —m (ma —b)a+ a®> = a® — mab + b, (3)

Let (ao,bo) be the “smallest” solution in the sense that ag + by < a + b, where (a,b) is
any solution.

ap + by < (mag — bo) + ao,

o 2
0
— < m. 4
2 <m (1)
2_b0<a%+b%+3
ag —  agbp—1
0 < —2agb? + 2b + a3 + 3ap (5)

Let (ao,ap + k) be a solution. Then substituting in (5) gives,

0< —2ao(ao+k)2 +2(ap + k) + aj + 3ao
= —2k%ap — 4kad + 2k — aj + 5ag.

Solving —2k2%ag — 4ka% + 2k — aé + 5ag > 0, we get

1 1
— (1-2a} —/6ad +2a4 +1) <k<-—(1-2a]+ /602 +2a}+1]),
QCLO 2a0

hence, k will have positive values only if

\/6ad +2af +1+1 > 24,

This inequality holds for ap = 1 and a9 = 2. For ap = 1, possible values for k are 1 or 2;
for ag = 2, possible value for k is 1.



Thus we have to check the following set of potential solutions: {(1,2),(1,3),(2,1)}.
Clearly (1,2) and (2,1) are solutions, but (1, 3) is not.

For (1,2) and (2,1) the value of m is 8. We conclude that the sole value of m is 8.

It follows from (3) that the pairs (an,b,) (and by symmetry (b, ay)), which satisfy
condition (1) are expressed by the recurrence formulas

Apt1 = San - bna

b1 = an,

which are equivalent to the recurrence formulas

Ont2 = 8aApt1 — Qn, (6)

bn+2 - 8bn+1 - bn

We have two sets of initial conditions:

1) ap =1, ag = 6,b9 = 2,b; = 1; the pairs resulting from these initial conditions are
(1,2), (6,1), (47,6), (370,47),....

(37 ym) (V) (5 o) (V)
(10 ) (i) (1 ) (1)

2) ap =2, a; = 15,by = 1,b1 = 2; the pairs resulting from these initial conditions are
(2,1), (15,2), (118,15), (929,118), ....

S
|

bn

()T i) e

by (gw%) (4_«5)%(;_%) (1+v1)".

Reference:

[1] La Gaceta de la RSME, Vol. 18 (2015), No. 1. “Solution to Problem 241, by Roberto
de la Cruz Moreno”.

Solution 2 by Anthony Bevelacqua, University of North Dakota, Grand
Forks, ND

1) There are no solutions to our problem with a =b. We have

a* +3a% +1=5mod (a® — 1). Assume there is a solution with @ = b. Then a? — 1
divides a* 4 3a? 4+ 1 so a* +3a%> +1 = 0 mod (a® — 1). Thus 5 = 0 mod (a? — 1) and so
a® — 1 divides 5. But then a? = 2 or a® = 6, a contradiction in either case.

2) The only solutions with a < 4 are (a,b) = (1,2), (2,1), (1,6) and (2,15).

Suppose (a, b) is a solution to our problem. If @ =1 then b— 1 divides 5sob—1=1 or
b—1=5. Both (1,2) and (1, 6) are solutions. If ¢ =2 then 2b — 1 divides 29 so
2b—1=1or2b—1=29. Both (2,1) and (2,15) are solutions. If a = 3 then 3b— 1
divides 109 so 3b — 1 =1 or 3b — 1 = 109, a contradiction. If a = 4 then 4b — 1 divides
305 =5-61s04b—1 € {1,5,61,305}, a contradiction.



3) ab— 1 divides a* + 3a® + 1 if and only if ab — 1 divides a® + b* + 3.
We have

(ab—1)(a®b+3ab+a®> +3) = a*d? +3a?b* + a’b+ 3ab— a®b— 3ab—a® -3
= o'’ +3ad%* —a® -3

and so
b (a* +3a® + 1) — (ab—1)(a®b + 3ab + a® + 3) = a® + b* + 3.

Thus if ab — 1 divides a* + 3a® + 1 then ab — 1 divides a® + b* + 3. Conversely suppose
ab — 1 divides a® + b* + 3. Then ab — 1 divides b%(a* + 3a® + 1). Since ab — 1 and b? are
relatively prime we have that ab — 1 divides a* + 3a® + 1.

Now if k > 0 and (a,b) is a solution to a® + b + 3 = k(ab — 1) then b is a root of the

polynomial a® + 22 + 3 = k(ax — 1) which can be rewritten as

22 — kax + (a® + 3+ k) = 0. Thus if & is the other root we have, by Vieta’s formulas,
b+ = ka and bt = a® + 3 + k. The first shows that V' is an integer and the second

shows that &' > 0. Thus (a, ') is another solution to a? + b? + 3 = k(ab — 1).

4) If ab — 1 divides a® + b? + 3 then a® + b> + 3 = 8(ab— 1). Suppose there are positive
integers a, b, k such that a® + b> + 3 = k(ab — 1). For this fixed k let S be the set of all
positive integer pairs (a,b) such that a? + b* + 3 = k(ab — 1). Choose an (a,b) € S such
that a 4+ b is minimal. Without loss of generality we have a < b. Since a # b by 1) we
have a < b. Now (a, V') is another solution. Since a + b is minimal we have a +b < a + ¥
and hence b < b¥'. Thus

<t =a> 131k —= k>b2—a2—3

and so
a® +b6*+3 = k(ab—1)
> (b —a®—3)(ab—1)
= ab® — v — a*b+ a® — 3ab+ 3.
Hence

3ab + 2b% > ab® — a®b = 3a+2b > ab® — a>.

Since a < b we have 3a + 2b < 5b and ab® — a® = a(b+ a)(b — a) > ab. Thus 5b > ab and
so a < 5. By 2) the only possible (a,b) are then (1,2), (1,6), and (2,15). Each of these
gives k = 8.

Thus 3) and 4) show that our original problem is equivalent to finding all positive
integers a and b such that a® 4+ b* + 3 = 8(ab — 1). We could rewrite this as

(a — 4b)? — 156> = —11 and apply the theory of equations of the form x2 — Dy? = N as
found in, say, section 58 of Nagell’s Number Theory. Instead we will determine the
solutions by “Vieta jumping” as in the proof of (4).

Let S be the set of all positive integers pairs (a, b) such that a® + b> + 3 = 8(ab — 1).
Clearly if (a,b) € S then (b,a) € S, and, by 1) there are no (a,b) € S with a = b. Recall
that if (a,b) € S then (a,d') € S where b+ 0 = 8a and b = a? + 11.

5) For any (a,b) € S define p(a,b) = (¢, a) and \(a,b) = (b,8b — a). Then p(a,bd) € S,
Aa,b) € S, and A(p(a, b)) = (a,b).



Let (a,b) € S. We have (a,b') € S and hence p(a,b) = (b',a) € S. Now

b+ (8b—a)?+3 = 64b% — 16ab+ (a® +b* +3)
= 64b* — 16ab + 8(ab — 1)
= 64b% —8ab—8
= 8(b(8—a)—1)

so A(a,b) = (b,8b —a) € S. Finally,
)‘(p(av b)) - )‘(blv a) - (a7 8a — b/)
where

a2+1178ab—a2—117ﬁ
b N b b

8a — b =8a— =b.
6) The only (a,b) € S such that a < b < 10 are (a,b) = (1,2) and (1,6).

Since a® 4+ b> + 3 = 0 mod 8 we see that a and b must have opposite parity and neither
can be divisible by 4. Moreover the only such solutions with a or b less than 4 are (1, 2)
and (1,6) by 2). This leaves only

(a,b) = (5,6),(6,7),(6,9),(5,10),(7,10), (9, 10)
and none of these satisfy a? + b* + 3 = 8(ab — 1).
7) Let (a,b) € S such that b > 11. If a < b then & < a

Suppose first that &’ < 10. Assume a < ¥'. Since (a,d’) € S we have a # o'. Thus
a < b <10. So, by 6), we must have a =1. But if a =1 we have b=10or b =6, a
contradiction with & > 11. Hence V' < a.

Suppose now that b’ > 11. Again assume a < b'. Then, as in the last paragraph, a < ¥'.

We have 1
W =a>+11< (V) +11 = b<b’+?§b’+1

and so b < V. Now swapping b and V' we have
b =a?+11 <b? +11 = b’<b+1—b1§b+1
and so b’ < b. Thus b =1V'. Since 8a = b+ b’ = 2b we have b = 4a. But then
a? +16a® +3 =8(4a® — 1) = 11 = 154%,
a contradiction. Hence b’ < a.

Finally,

8) (a,b) € S if and only if {a,b} = {sp, Sp+1} or {a,b} = {t,, tn+1} for n > 0 where
so=1, 81 =2, and s,, = 88,1 — Sp_9 for n > 2

and
to=1, t1 =6, and t, = 8t,_1 — t,_o for n > 2.



Note that A™(1,2) = (sp, Spt+1) and A\*(1,6) = (¢, tny1) for all n > 0.

Since (1,2) and (1,6) € S we sce that (a,b) € S for any {a,b} = {sn, Sp+1} or
{a,b} = {tn,tn+1} and n > 0 by (5).

Now suppose (a,b) € S. Since (b,a) € S as well, we can suppose without loss of
generality that a < b. By 5) and 7) there exists an integer d > 0 such that

pt(a,b) = (a*,b*) with a* < b* < 10. By (6) we must have p?(a,b) = (1,2) or

p%(a,b) = (1,6). Since (a,b) = A% (p%(a,b)) we have (a,b) = A%4(1,2) or (a.b) = A%(1,6).

Thus ab — 1 divides a* + 3a? + 1 if and only if @ and b are consecutive elements of either
of the sequences s, or t, given above. Since the first few terms of s, are
1,2,15,118,929, 7314,57583, ... and the first few terms of ¢,, are
1,6,47,370,2913,22934, 180559, ... the first few solutions to our problem (with a < b)
are

(a,0) = (1,2),(2,15),(15,118), (118,929), (929, 7314), (7314, 57583), . ..

and

(a.b) = (1,6), (6,47), (47,370, (370,2913), (2913, 22034), (22934, 180559). . . .

Also solved by Ed Gray, Highland Beach, FL; Kenneth Korbin, NewYork,
NY; Toshihiro Shimizu, Kawasaki, Japan; Anna V. Tomova (three solutions),
Varna, Bulgaria, and the proposer.

5436: Proposed by Arkady Alt, San Jose, CA

Find all values of the parameter ¢ for which the system of inequalities

v +t>2y
A=<¢Yy+t>2z
Vz+t> 2
a) has solutions;
b) has a unique solution.
Solution by the Proposer
t> 16y4 —x
a) Note that (A) < t>1621—y = 3t>16yt—z+162* —y+ 162t — 2 =
t> 1624 — 2

(162" — z) + (16y" —y) + (162" — 2) > 3min (1627 — 2) —= ¢ > min (162" — ).

x

1
For z € (O, E) , using the AM-GM Inequality, we obtain

1—162%)°
<
18 =

! 482% +3—3-162%\" 5 1 3\* 3 .
— =4/—="|- —. A —162* < 0 f
\/48 ( 1 8 \2 16 nd since x T or

10

. p 4823
z—162% =z (1 - 162%) = {/23 (1 — 1623)° :i’/( z*) (




1 3
¢ <0, E) , then for all # the inequality x — 162* < 16 holds. Since the upper bound
T for values

1 3
x — 16z* is attainable when = 1’ then max (a: - 163:4) =16 —
3

in (162* — z) = ——.
min (162* — ) T
3
Thus t > T is a necessary condition for the solvability of system (A).
Let’s prove sufficiency.

3 3
Let t > 16 Since function h (z) is continuous in R and min (162! — z) = 16 then
T

{—1—36, oo> is the range of A (x) . This means that for any ¢ > —% the equation

1621 —z =1t

has solution in R and since for any u which is a solution of the equation 16z*—z =t
the triple (z,y,2) = (u,u,u, ) is a solution of the system (A) then for such ¢ system (A)
solvable as well.

Remark.

Actually the latest reasoning about the solvability of system (A) if ¢ > _1_36 is redundant

111

for (a) because suffices to note that for such ¢ the triple (z,y,z) = <4_L’ 11
(A).

But for (b) criteria of solvability of equation 162* — 2 = ¢ in form of inequality

> satisfies to

t> 3
—— is
- 16

important.

3
b) Note that system (A) always have more the one solution if ¢ > BT

3
Indeed, let for any tq,ty € (—E, t) such that ¢; # ¢y equation 16u? — u = ¢; has
solution u;,7 =1, 2.

Then u1 # ug and two distinct triples (u1, w1, u1), (ug, uz, ug) satisfy to the system (A).

3 3 3 3
Let ¢ 161hen 16 16y r = 16+x y > 16y Y 16

3 3
Hercof x —y > 0 <= x > y. Similarly 16 > 16z* — y and 16 > 16z* — z implics
y > z and z > x, respectively. Thus in that case x = y = z and all solutions of the

system (A) are represented by solutions of one equation 162% — x = T —

3 1
162 — x + 6o 0 <= 256z* — 162 +3 =0 which has only root 1 because
2562 — 162 + 3 = (4o — 1)* (1622 + 8z + 3) .

1
Thus, system (A) has unique solution iff ¢ = 7

Also solved by Ed Gray, Highland Beach,FL; Kee-Wai Lau, Hong Kong,
China; Moti Levy, Rehovot, Israel; David Stone and John Hawkins, Georgia

11



Southern University, Statesboro, GA, and Toshihiro Shimizu, Kawasaki,
Japan.

5437: Proposed by José Luis Diaz-Barrero, Barcelona Tech, Barcelona, Spain

2—3z

z2—2"

f™(z)=(fofo...of)(z2), then compute f*(z) and lim f"(2).
——— n——+00

n

If

Let f: C — {2} — C be the function defined by f(z) =

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

Assume first that z # 2 and f™ (z) exists for all n > 1. Then, direct computation yields

10112

42 — 43z
2 B 2

=" 1
21z — 22 )

and  f3(2)
When these are combined with the formula for f (z), it appears that there is a sequence
{z,} of positive integers such that

2z, — 2z, +1) 2

Tpz — (Tn +1) 2)

f1(z) =

2-3
for all n > 1. Since f(z) = —22, we have z; = 1. Further, if (2) holds for some n > 1,

then

@) =1 (" ()

_2-3/"(2)

fr(z) -2

e
[ Zn — (@n t 1) } 2

- 2[xpz — (p +1)] = 3[22, — (22, + 1) 2]
2z — 2z + 1) 2] = 2[2nz — (2, + 1)]

~ (8zy +2) — 8z, +3)2
4z + 1) 2 — (4an +2)°

This suggests that z,4+1 = 42, + 1 for n > 1. These conditions on {z,} are consistent
with the formula for f (z) and property (2). Note finally that

3 4-1 15 42-1 63 43 -1
—1=="- —5=_" = d —92] = —= = .
X1 3 ; X9 3 3 y an xs3 3 3

12



n_

This leads us to conjecture that z, = and hence,

2(4713_1) - {2<4n3_1> “}Z 2 —1)— (247 +1) 2

(4"3—1> L {(42—1) +1] o (dn—1)z— (4" +2)

If f™(2) exists for all n > 1, let P (n) be the statement

24 -1 —(2-4" + 1)z
o @r—1)z— (4" +2)

(=) =

for all n > 1.

I"(2)

Ifn=1,

2(4-1)—(2-4+1)z  6-92
(A-1)z—(4+2)  3z2-6

and thus, P (1) is true. Assume that P (n) is true, i.c.,

204" — 1) — (2-4" 4 1) 2
(4" — 1)z — (4" +2)

(=) =
for some n > 1. Then,

R =F((2))

) {2(4%-1)—(2.4"“)?
(4" —1)z — (4" + 2)
24" —1)—(2-4" + 1)z
[ (4" —1)z— (47 +2) ]_

C2[(d"=1)z— (4" 4+2)] = 3[2(4" — 1) — (2-4" + 1) 2]
C[2(4n —1) = (2-4n + 1) 2] = 2[(4" — 1) z — (4" + 2)]

C2("—=1)+3(2-4" + 1))z — [2(4" +2) + 6 (4" — 1)]
UMD H+2@+2)] -2 4+ 14240 —1)] 2

(2-4"tt 4 1)z —2(4nT1 — 1)
gl 4 2) — (4ntl — 1) 2
(

2 —1) — (2.4 4 1) 2
(4n+1 _ 1) 2 — (4n+1 + 2)

and therefore, P (n+ 1) is also true. By Mathematical Induction, P (n) is true for all
n> 1.

Because formula (3) required the assumption that f™ (z) exists for all n > 1, we need to
determine if there are points z € C'\ {2} for which there is a positive integer m such that

13



f™(2) does not exist for n > m. The existence of f™ (z) requires that z, f(2), ...,
"1 (2) # 2. Therefore, we have to find all points z for which f™ (z) = 2 for some
m > 1. One way to do this is to consider the inverse function

2z 42
1 _
! (z)_z+3

and describe

o= (erte o )0

in a manner similar to that used to find formula (3). If we do so, we see that for z # —3,

4" 4+2)z4+2(4m-1)
(4m—1)z+42-4m+1°

(=) =

In particular,
(4™ +2)-242(4m—1) 4™l 42

M (2) = = .
;) (4m—1)-2+2.4m 1 4mtl 1

4m+1 +92

If 2, = yrEs—] for some m > 1, then it follows that f™ (z,,) = 2 and hence, " (z,,) is

undefined for n > m. Therefore, liI_'I_l ™ (2m) does not exist for these points.
n—-+oo

Let m+1
4 +2

For z ¢ S, f™(z) exists for all n > 1. If z =1, then z ¢ S and (3) implies that

204" —1)—(2-4"+1)
(4 —1)— (4" +2)

(1)

-3
-3
=1

for all n > 1. Hence, ll)I_}_l f™ (1) = 1. For all other values of z ¢ S,
n o0

, 2 1) (247 4 1)z
ny
ngr-lkloof (2) = nll}}-loo (4n—1)z— (4" + 2)

2(1—47") — (24472
Tt (1—4 ") 2 — (11 2-4-7)

Therefore, for z ¢ S,

' w1 ifz=1
lim f"(z) —{ —2  otherwise

Solution 2 by Henry Ricardo, Westchester Math Circle, NY
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We take advantage of the well-known homomorphism between 2 x 2 matrices and
a b az+0b

Mobius transformations: A = c da)® f(z)= d

composition f™(z) corresponds to the nth power of A. Here we are dealing with powers

. -3 2
ofthematmxA( 1 _2).

In this relation, the n-fold

Now we invoke a known result that is a consequence of the Cayley-Hamilton theorem: If
A € My(C) and the eigenvalues A1, Ay of A are not equal, then for all n > 1 we have

A" = \IB + A\5C, where B =

(A — /\2]2) and C =

(A—\I2). (%)

/\1—>\2 >\2_>\1

(See, for example, Theorem 2.25(a) in Essential Linear Algebra with Applications by T
Andreescu, Birkhéuser, 2014.)

The eigenvalues of the given matrix A are —1 and —4, so we apply (%) to get

An = _;)n (A+an) — D% a1

3
After some simplification, we sce that

CIP ) 4, (Lo,

—1)n —
3
B (e O A G VAo (G >
(=" + z(=1)"Hian H=1)n(2 +47)

(2-4" + 1)z — 204" —1)

"G = A= 7 vy

Finally, we note that f*(1) =3/3 = 1; and, for z # 1, we have

(244 1)z - 24h—1)  2(2—1)
n i — — -
W f7 ) = o (1—47)z + (4n+2)  1—-2z 2

Therefore,

ney 1 ifz=1,
Am ) = { —2 ifz A1

Solution 3 by David E. Manes, Oneonta, NY
We will show by induction that

2—2a"+1z

PO = g
Z —_——

Qn

n_ — 3z
4 1. If n =1, then a; = 1 and fM(z) = ((2 32~)) = f(z). Therefore, the
- —

result is true for n = 1. Assume the positive integer n > 1 and the given formula is valid

where a,, =

15



for £(")(z). Then

5 2a, +1
a
23| — %
1 2 1
Gt 22_2<ana+ >_6+3<a2_+>2
fo@) = fEE) = o= " -
2 1
g_ 20t 1. 2_2an+1z_22+2<an+1>
428 _9 [¢7% Gp
an + 1
an
20,2 —2an, — 2 —6a, +6a,2+32  —2—8a, + (8a, +3)z
C 2an —2ap2 — 2 — 20,2 +2an, +2 —(4an + 1)z + (4n +2)

Csisesarn: () (5 )
(4an + 1)z — (4n+2) (4(4"3—1> +1>z— <4<4n3—1> +2>

(=2 424" — (1 247ty
(4n+1 — 1)z — (4n+1 4 2)

2. 4n+1 2.4 41
240t 41 2- 4n+1
2- An+1 _ 1 c
- ] qntl 49 - 4n+1 + 2
“ T\ gntl
Z = 4n+1
2 1
9_ < n+1 + > >
An+1
B <an+1 + 1)
an+1
4n+1 -1 4n+1 9 4n+1 -1
where a,11 = (—3) Note that 3+ = 3 +1=apy1 +1 and
2,4n+1+1 2‘4n+1_2 4n+1_1
3 = 3 +1=2(—3 )+1=20n+1+1-

Hence, the result is true for the integer n + 1 so that by the principle of mathematical
induction the result is valid for all positive integers n.

For the limit question, note that if f(z) = z, then z =1 or z = —2. Therefore, one of the
fixed points of f is z = 1 so that f(™(1) = 1 for each positive integer n and
lim f™(1) = 1. Moreover, observe that

n—-+00

lim — = lim =0
n—+00 ay, n—+oo 4" — 1

Therefore, if z = 1, then
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1
g 20 t1, (2— lim <2+—>z> oo,
1 _
lim f™(z) = lim Gn, = e an — — 9

n—-+00 n——+o00 an +1 . 1 z—1
= z— lim (14—

(079 n—-+00 (7%

Hence,

lim f(")(z) = L %fZ =1
n—+o0 -2, ifz#1.

Solution 4 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

b
Recall the map f(z) = az t — { ¢

ez +d c d
fractional linear transformations

] gives a group isomorphism between group of

az+b
cz+d

{f:f(z): Wherea,b,c,dECandad—bc;éO}

under function composition and the group

CL2,C) — {[ ‘ Z } ca.b,e,d € C and ad—bcyéo}
under matrix multiplication.

To compute f"(z), let M = [ -3 2 } Using induction, we show

1 -2

M" =

(_1)” 22n+1+1 _22n+1 )
3 [ —4" 4+ 1 4" 42 } )
—1[22+1 —23+2 -1 9 —6 -3 2
1+ _ - —
Observe M* = 3 [ _3 6 3 _3 6 1 —9 |-
Assume

M" =

(_1)n 22n+1 41 _22n+1 )
3 —4" 41 4"+ 2

and observe

M™M= MMM
(_1)n [ 22n+1 +1 _22n+1 +2 :| I: -3 2 :|

3 —4m 41 an+2 1 -2

B (_1)71 _3(22n+1 + 1) + (_22n+1 4 2) 2(22n+1 4 1) _ 2(_22n+1 + 2)

= 3 —3(—4" 4 1) + (4" +2) 2(=4"+1) 24" +2)
(=1)nt [ 92(+1)+1 1 1 _92(n+1)+1 4 9

D R R R g

Using the aforementioned group isomorphism and simplifying, we conclude

(22n+1+1)z_22n+1+2 - (2.471_1_1)2_'_(2_2.471)
(=47 + Dz +4r+2 (1 —4n)z + (2 +47)

f"(z) =

17



4k
Notice that the map f"(z) is undefined for z = " +

2
T where 1 < k < n. Consequently

lim f(z) does not exist for these values of z. Furthermore,
n—+00

. . 24"+ D)z+(2—-2-4)
lim f*(z) = lim
n—1>+oof ( ) n—1>+oc (1 — 4")z + (2 —|—4”)

(
2+a)z+ (F-2)

Note f(1) =1so f*(1) =1 for all n > 1. It follows that

n

4" 42
DNE if z = " + where n € Zsg

lim f(z) = B

n—+too 1 ifz=1
—2 otherwise.

(DNE = does not exist)

Comment by Editor : David Stone and John Hawkins of Georgia Southern
University stated the following in their solution: “The appearance of so many sums of
powers of 4 prompts us to offer a candidate for the cutest representation of f (")(z) :

(2-111... .14+ 1)z —2-111...14
—111.... 14z + (111... 14+ 1)

1™(z) =
where each of the base 4 repunits has n — 1 digits.”

Solution 5 by Toshihiro Shimizu, Kawasaki, Japan

_apz +by

. Then, we have
cnz + dp

Let f™(z)
an+1z+bn+1 _ g+l
Cnt12 + dn+1 f (N)
2—3z
. n

- (555)
(b —3an)z +2(an — by)
(dn —3cn) 2 +2(cn — dyp)

Therefore, we have an+1 = by — 3an, b1 = 2a, — 2b, and cp41 = dy, — 3cy,
dni1 = 2¢, — 2d,. Since fO(2) =2, ap=1,bp = co =0 and dy = 1. Since
by = an+1 + 3a,, we have

Ont2 + 3ant1 = 2an — 2 (apy1 + 3an)
Gn+2 + dant1 +4a, =0
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and a1 = bp — 3ag = —3. Thus, we have

1 2
an 3 ( ) + 3 ( )
bp = ant1 + 3a,
1 2
2 2
= (=D == (=4)".
3 (D = 5(4)
Similarly, we have cp4+9 + 5cpt1 + 4c, = 0 and ¢; = do — 3cg = 1. Thus, we have

dp = cpi1 + 3¢y
2. .1,
=301+ 3 (=4
Therefore,
(D" +2(=4)") =+ 2(=D"—-2(-4)")
(D" = (=" z+2(=D"+(-4)")

I"(z) =

If z # 1, we have

iy (2@ )
(D))" =1+ 2(1)"+1)
22 —2
_>—z+1
=—-2 (n— +00).

If z =1, the value of f™(z) is always 1 and its limit is also 1.
Solution 6 by Kee-Wai Lau, Hong Kong, China

It can easily be proved by induction that
2(227 — 1) — (227 £ 1)z
(227 — 1)z — 2(22n—1 1)’

222k—1 1
%Zk:1,2,3,'“ ,TL}.

f(z) =
whenever z ¢ S,,, where S, = {2} U {

2(2% 1 41

Clearly, li_>m f*(1)=1andif z ¢ T, where T = {1,2} U { P
n—oo —

then lim f"(z) = —2.
n—o0

k:1*273}

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Brian D. Beasley,
Presbyterian College, Clinton, SC; Brian Bradie, Christopher Newport
University, Newport News,VA; Bruno Salgueiro Fanego Viveiro, Spain; Ed
Gray, Highland Beach, FL; Moti Levy (two solutions), Rehovot, Israel;
Francisco Perdomo and Angel Plaza, Universidad de Las Palmas de Gran
Canaria, Spain; Trey Smith, Angelo State University, San Angelo, TX;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.
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